D-MATH	Differential Geometry II	ETH Zürich
Prof. Dr. Urs Lang	Exercise Sheet 6	FS 2025

6.1. Conjugate points. Let $c: [a, b] \to M$ be a geodesic such that for all $t \in (a, b]$ the point c(t) is not conjugate to c(a) along c. Show that for all $s, t \in [a, b]$ with s < t, we have that c(t) is not conjugate to c(s) along c.

6.2. Trace of a symmetric bilinear form. Let $(V, \langle \cdot, \cdot \rangle)$ be a *m*-dimensional Euclidean space and let $r: V \times V \to \mathbb{R}$ be a symmetric bilinear form. Furthermore, let $S^{m-1} = \{v \in V : |v| = 1\}$ be the unit sphere. Prove that

$$\int_{S^{m-1}} r(v,v) \, d\mathrm{vol}^{S^{m-1}} = \frac{\mathrm{vol}(S^{m-1})}{m} \mathrm{tr}(r) = \omega_m \mathrm{tr}(r),$$

where $d \operatorname{vol}^{S^{m-1}}$ denotes the induced volume on S^{m-1} and ω_m is the volume of the *m*-dimensional unit ball.

6.3. Small balls and scalar curvature. Let p be a point in the m-dimensional Riemannian manifold (M, g). To goal is to prove the following Taylor expansion of the volume of the ball $B_r(p)$ as a function of r:

$$\operatorname{vol}(B_r(p)) = \omega_m r^m \left(1 - \frac{1}{6(m+2)} \operatorname{scal}(p) r^2 + \mathcal{O}(r^3) \right).$$

1. Let $v \in TM_p$ with |v| = 1, define the geodesic $c(t) := \exp_p(tv)$ and let $v, e_2, \ldots, e_m \in TM_p$ be an orthonormal basis. Consider the Jacobi fields Y_i along c with $Y_i(0) = 0$ and $\dot{Y}_i(0) = e_i$ for $i = 2, \ldots m$. Show that the volume distortion factor of \exp_p at tv is given by

$$J(v,t) := \sqrt{\det\left(\langle T_{tv}e_i, T_{tv}e_j\rangle\right)} = t^{-(m-1)}\sqrt{\det\left(\langle Y_i, Y_j\rangle\right)},$$

where $T_{tv} := (d \exp_p)_{tv}$.

2. Let E_2, \ldots, E_m be parallel vector fields along c with $E_i(0) = e_i$. Then the Taylor expansion of Y_i is

$$Y_i(t) = tE_i - \sum_{k=2}^m \left(\frac{t^3}{6}R(e_i, v, e_k, v) + \mathcal{O}(t^4)\right)E_k.$$

- 3. Conclude that $J(v,t) = 1 \frac{t^2}{6} \operatorname{ric}(v,v) + \mathcal{O}(t^4)$. Hint: Use $\det(I_m + \epsilon A) = 1 + \epsilon \operatorname{tr}(A) + \mathcal{O}(\epsilon^2)$.
- 4. Prove the above formula for $vol(B_r(p))$.